

SERVICE MANUAL

	3
CLASSIFICATION	4
GENERAL DESCRIPTION	5
X-RAY GENERATOR MAIN FEATURES	5
ENVIRONMENTAL SPECIFICATIONS	5
X-RAY GENERATOR ACCESSORIES	5
X-RAY GENERATOR PARAMETERS 15kW	6
OPERATING MODE 15 kW	6
WORK PAGE	7
Web pages version	9
Anode heat units	9
I.I. Check	9
SERVICE PAGE	10
Dose calibration correction factor	12
Code	12
DAP system	12
Dose factor	15
	15
SETTING DATA PAGE	16
Time and data setting area	18
LINKS to documentation	18
	10
LOADING THE DEFAULT DATA	20
RX TUBE ADJUSTMENT	22
Fluoro adjustment	22
Pulse adjustment	26
COLLIMATOR ADJUSTMENT	31
BACKUP	34
RESTORE	35
COMPONENTS	36
INVERTER LOGICAL BOARD PSM05	37
FILAMENT SUPPLY BOARD PSM46	38
3000 rpm ROTATION CHECK BOARD PSM20	39
PSM 20 ROTATING ANODE OUTPUT VOLTAGE ADJUSTMENT	<u>40</u>
DRIVER BOARD PSM15	41
KS232 / CAN COLLIMATOR BOARD PSM30	42
	42
	43

EXTERNAL INTERFACE	44
EXTERNAL SIGNALS RADIOLOGICAL ROOM	44
SAFETIES	45
HARDWARE SAFETIES	45
SOFTWARE SAFETIES	48
ERROR LIST	49
ADDITIONAL INFORMATION	54
MAINTENANCE	55
	55
WASTE	55
SYMBOLS	56

INTRODUCTION

X-RAY GENERATOR TO COUPLE VIDEO CHAIN WITH BRILLIANCY INTENSIFIER PROPERLY DEVELOPPED FOR X-RAY SYSTEM ORIENTATION IN LITHOTRIPSY.

X-RAY EQUIPMENTS CAN BE DANGEROUS FOR PATIENT AND OPERATOR HEALTH IN THE ABSENCE OF RIGOROUS PROTECTION'S MEASURES.

Although this equipment is planned and assembled following safety regulations, X-ray sources ever can be dangerous for the operator and the patient. X-ray excessive exposure cause damages for one's health.

All people using these devices must protect them with appropriate X-ray shielding. Consequently must be taken all necessary cautions in order to void the use of this equipment to not authorized or not qualified people as to represent a danger for himself and for other peoples.

Authorized and qualified people to use this equipment, before to perform any action, must be informed of protection's measures as in compliance with X-ray protection rules of International Commission and nationals rules on the matter.

Electromagnetic interference in conformity to 89-336 rule "don't use in presence of mobile phones or other equipments that can cause electromagnetic interferences", such to endanger the equipment's functioning.

Properly use of this equipment require previous and accurate operator's consultation of this user's manual.

CLASSIFICATION

GENERATOR CLASSIFICATION

- 93/42 EEC, Class II b, Annex IX, rule 10
- Class I Equipment (IEC 60601-1)
- Applied rule Type B (IEC 60601-1)
- Protection Degree IP X0
- Use Requirements "Equipment planned for continuous working with discontinuous charge"
- Safety Degree "Equipment not suitable for use in presence of antiseptic mixture with air, oxygen or with nitrous oxide"

GENERAL DESCRIPTION

X-RAY GENERATOR MAIN FEATURES

- Frequency 40 kHz.
- X-Ray dose checking during X-ray emission.
- A web interface with res 800x600 simplifies user's work.
- User friendly system configuration.
- Continuous Fluoroscopy, pulsed Fluoroscopy and Snap-Shot modes.
- Integrated self-diagnosis with automatical alert messages.
- Image intensifier parameter and digital camera control.
- Tube's thermal units checking.
- Exposure data self-calibration system.

ENVIRONMENTAL SPECIFICATIONS

IN USE

Ambient temperature range:

10 – 40 C°.

Relative humidity:

- 20 80%, not condensing
- Positioning from sea to 2440 meter above sea level (from 700 to 1100 hPa).

TRANSPORT AND STORAGE

- Ambient temperature range: -25 70 C°.
- Relative humidity: 5 95%, not condensing.
- Atmospheric pressure range: 500 1060 hPa (375 795 mm Hg).

The information container herein is presented only as a guide for the use condition in respect of operator and x-ray generator safety.

X-ray generator must be used only in respect of safety notice in this section and possible additional manufacturer's information and/or safety relevant authorities.

X-RAY GENERATOR ACCESSORIES

(Not supplied by P.S.M.)

- Video system with Image intensifier and camera with digital memory Flxis 9" & 12".
- R605 Automatic collimator with CAN interface.

X-RAY GENERATOR PARAMETERS 15kW

Max power supplied:	15 kW		
Max Voltage at the Tube:	120 kV		
KV range:	from 40 kV to 120 kV	KV accur	acy ±(5% + 1) kV
Fluoroscopy mA range:	from 0.2 to 5.0 mA Low / from	m 0.4 to 10).0 mA High
Pulsed mA value:	10-15-30-60-120 mA.	mA accur	acy ±(10% + 1) mA
Factor charge in order to produce m	ninimum current - time:	4.8 kW	40 kV, 120mA, 20ms
Max X-ray tube power and max X-ra at this current-time:	ay tube voltage	14.4 kW	120 kV, 120 mA
Combination of X-ray tube voltage a at max power supply:	and X-ray tube current	14.4 kW	120 kV, 120 mA
Max continuous supply at 100 kV, in continuous:		370 w	100kV, 3.7mA

OPERATING MODE 15 kW

Continuous fluoroscopy

- automatic or manual kV selection;
- automatic calculation of associated mA value in function of the set curve
- possibility of mA doubling in high dose;
- possibility of mA halving in low dose.

Pulse fluoroscopy

- automatic or manual kV selection;
- mA value 10/15/30/60 for small focus and 30/60/120 for large focus;
- possibility of selection among 6, 9 or 12 fps frame rate;
- exposure time checked by digital memory.

Snap shot

- automatic or manual kV selection;
- mA value 60 for small focus and 120 for large focus;
- Burst time 180 ms;
- 5 pulses;
- X-Ray time per pulse of 20 ms;
- exposure time checked by digital memory.

WORK PAGE

Click on the image area to switch on the unit and access the Work page.

The Work page appears.

- 20
- 21 I.I. Check
- 22 Clear screen

Web pages version

Version 2.0 15kW

At the top left of the screen you can read the web pages version; this is different from the software version.

Anode heat units

This gauge bar and the percentage number on the right show how many anode heat units are still available for X-raying. On the left you can read how many seconds are still usable for X-raying.

41 .	73.04
	1 2 70

While X-raying, you will see these values decrease.

When you reach the '0%' value it means that the anode is overheated and you won't be able to shoot anymore in pulse mode, while you still can go with the continuous mode.

8 • _____ 15 %

In order to be able to use the pulse mode again, you must wait till the 15% of the anode heat units are restored.

I.I. Check

At the top of the screen you can see the word <POST> followed by a number. If you read '0' then the I.I. communication is OK; if you read any other number, then please refer to the FLXIS documentation.

SERVICE PAGE

Press the <SERVICE> button to access the Service page.

The Service page appears.

Safety & Tab POST "O ersion 2.0 15kW	" System Power Version	15 kW 5.03	II. 9''		Esc
Setting Data Code	Dose calibration correction fact	on 114		No fan Standard	fan
DPI Pulse "L" Start large Focus DPI Fluoro "N"	Start KV Value	70		Heatsin Fan + heat	k sink
Image Intensifier state		Operating cu	irve	Fluoro]
Collimator state Disabled		Door contact	state	Disabled	1
DAP system state		Fluoro Buzze	r	Enabled]
Dose Factor Disabled		Low mA for p	ulsed mod	e [<u>Enabled</u>	mA 1
Filament safety		Load FLUOR	O tab	Disabled]
Rotor safety Enabled		Load PULSE	tab	Disabled]
85% KV safety		Load SETTIN	IG tab	Disabled]
mA_Pulse Safety Enabled		Load DOSE	ab	Disabled]
djustment	PUI	SE LF 120 mA	PULSE	SF 60 mA	
	PU	LSE LF 60 mA	PULSE	SF 30 mA	
COLLIMATOR	PU	LSE LF 30 mA	PULSE	SF 15 mA	PLS SF 10

- 1 Return to Work page button.
- 2 Dose calibration correction factor.
- 3 Start kV value.
- 4 Dissipation system selection switches.
- 5 Access to Setting Data page button.
- 6 I.I. enable/disable switch.
- 7 Collimator enable/disable switch.
- 8 DAP system enable/disable switch.
- 9 Dose factor enable/disable switch.
- 10 Safeties enable/disable switches.
- 11 Fluoro/Isowatt curve selection switch.
- 12 Door contact state enable/disable switch.
- 13 Buzzer enable/disable switch.
- 14 Half / quarters or more mA for pulse enable/disable switch.
- 15 Default data loading switches.
- 16 Access to Fluoro calibration page.
- 17 Access to Collimator calibration page.
- 18 Access to Pulse calibration pages buttons.
- 19 Selection focus at switch on
- 20 Selection Low or High DosePerImage for Pulse and Fluoro

Dose calibration correction factor

You can change this correction factor, which alter the dose calculus

Code

This button allows to access a new page where you can set some system parameters. **This page is currently under construction.**

Collimator state

This switch allows you to activate/disactivate the use of collimator.

When the switch is set to <DISABLED>, the machine detects no collimator, regardless whether the collimator is actually installed or not.

When the switch is set to <ENABLED>, at the start-up the system performs a test in order to check the serial communication with the collimator. If the test is passed, the collimator will work correctly. Instead, if the collimator is absent or broken, or if it is not connected correctly to the generator, then the communication will fail, and the following error message will appear on the work page.

DAP system

This switch allows you to activate/disactivate the DAP system.

You can install on the machine one of the following types of DAP:

- VacuDAP-C
- VacuDAP-C duo

When you set the switch to ENABLED, the generator automatically recognizes which type of DAP system is installed. Four different situations can verify.

VacuDAP-C is installed and the DAP state is ENABLED

DAP system state Enabled 7_1.46

Next to the button you can read the following code:7_1.46

- 7 is the number which identifies the first type of DAP (VacuDAP-C);
- 1.46 is the firmware version.

If you look at the display in the WORK page, you will see the following dose data among the X-ray values:

In the SETTING DATA page you can read the following cumulation dose data.

VacuDAP-C duo is installed and the DAP state is ENABLED

Enabled 8_1.46 DAP system state

Next to the button you can read the following code:8_1.46

- 8 is the number which identifies the second type of DAP (VacuDAP-C duo);
- 1.46 is the firmware version.

If you look at the display in the WORK page, you will see the following dose data among the X-ray values:

In the SETTING DATA page you can read the following cumulation dose data.

No DAP system is installed and the DAP state is ENABLED

DAP system state Enabled _ .

Next to the button you will read no code. This happens if the DAP is not installed correctly, or it is out of order. So no communication between the DAP and the generator can start. The dose value that appears on the display in the WORK page is the value calculated by the generator.

Also, in the SETTING DATA page you can read the calculated cumulation dose data.

DAP state is DISABLED

I doesn't make difference whether the DAP system is installed or not. No code appears, and the only dose values available are the ones calculated by the generator.

Dose factor

Here you can change three factors which affect the dose calculus, each related to a fixed range of collimator opening areas.

Reduction mA for pulse mode

			mA Large focus	mA small focus
Low mA for pulsed mode	Disabled	<u>mA 1/2</u> sf 15 mA	120	60
Low mA for pulsed mode	Enabled	mA 1/2 sf 15 mA	60	30
Low mA for pulsed mode	Enabled	mA 1/4 sf 15 mA	30	15
Low mA for pulsed mode	Enabled	mA 1/4 sf 10 mA	30	10

SETTING DATA PAGE

afety & Tab POST rsion 2.0 15kW	System Power Version	15 kW U. 5.03	Esc
Setting Data Code	Dose calibration correction factor	114	No fan Standard fan
DPTFuise "L" Start large Focus DPTFluoro "N"	Start KV Value	70	Heatsink Fan + heatsink
Image Intensifier state Enabled		Operating curve	Fluoro
Collimator state Disabled		Door contact state	Disabled
DAP system state		Fluoro Buzzer	Enabled
Dose Factor Disabled		Low mA for pulsed mod	e sf 15
Filament safety Enabled		Load FLUORO tab	Disabled
Rotor safety		Load PULSE tab	Disabled
85% KV safety		Load SETTING tab	Disabled
mA_Pulse Safety Enabled		Load DOSE tab	Disabled
djustment			9
FLUORO COLLIMATOR			

The Service page appears.

etting Data Prsion 2.0 15kW	Post " 0 "	System Power Version	15 kW 5.03	II. 9''	Esc
Time 9 0 0	Date	9 1 1 20)07		Enter
9				0.57.3	7 . Jan .
D.A.P.		Time		0	Reset
				Last reset	1 Jan
LogicLevel2 x I.I.	0				Read
ocument			_		
Flxis Se	rvice	Web Help			
ackup		Re	store	Ise I FI	e uoro
			Collin		Watt

SETTING DATA FEATURES

	Setting Data POST "0" System Power 15 kW II. 9" Version 2.0 15kW Version 5.03	
	Time 9 0 Date 1 1 2007 Enter 0.57.3 7.Jan.	2
	D.A.P. Time 0 Reset	3
4	LogicLevel2 x I.I. 0 Read	8
5	Flxis Service Web Help	
	Backup Restore Pulse Fluoro Collimator IsoWatt	
	6	
	1 Return to Service page button.	

- Time and data setting area. 2
- 3
- RX dose and time resetting area. I.I. Logic Level selection switch. 4
- 5 Links to documentation.
- 6 Data backup buttons.
- Data restore buttons. 7
- Indication of anode overheatings. 8

Time and data setting area

Links to documentation

D	ocument	l.	
	Flxis	Service	Web Help

This buttons open three different .pdf files including documentation for Flxis, Service and Web Help. The last button actually links to this document.

Indication of anode overheatings

If you press the 'Read' button, a number appears on the left of the button, showing how many times you had the anode overheating before.

SELECTION AT THE START OF THE FOCUS

Start large Focus	when start the generator the large focus is selected
Start small Focus	when start the generator the small focus is selected
SELECTION D.P.I.	
DPI Pulse "L"	DosePerImage in Pulse is 5,0 nGy/image
DPI Pulse "N"	DosePerImage in Pulse is 6,4 nGy/image
DPI Fluoro "N"	DosePerImage in Fluoro is 6,4 nGy/image
DPI Fluoro "H"	DosePerImage in Fluoro is 10,2 nGy/image

LOADING THE DEFAULT DATA

Step 1 - Press the <Service> switch.

Step 2 - In the Service page you can see four switches on the right; they are set on <DISABLED>.

afety & Tab POST rsion 2.0 15kW	System Power Version	15 kW U. 5.03	Es
Setting Data Code	Dose calibration correction facto	114	No fan
DPI Pulse "L" Start large Focus DPI Fluoro "N"	Start KV Value	70	Heatsink Fan + heatsink
Image Intensifier state Enabled		Operating curve	Fluoro
Collimator state Disabled		Door contact state	Disabled
DAP system state		Fluoro Buzzer	Enabled
Dose Factor Disabled		Low martior pulsed n	node sf 1
Filament safety Enabled	/	Load FLUORO tab	Disabled
Rotor safety	(Load PULSE tab	Disabled
85% KV safety		Load SETTING tab	Disabled
mA_Pulse Safety Enabled		Load DOSE tab	Disabled
djustment			
FLUORO COLLIMATOR			

Step 3 - Press all of them to turn them to <ENABLED>.

Setting Data	Code	Dose calibration correction facto	n 114	No fan Standard fan
PI Pulse "L" Sta PI Fluoro "N"	art large Focus	Start KV Value	70	Heatsink Fan + heatsink
Image Intensifier state	Enabled		Operating curve	Fluoro
Collimator state	Disabled		Door contact state	Disabled
DAP system state	Disabled		Fluoro Buzzer	Enabled
Dose Factor Disa	abled		Low mA for pulsed me	Enabled m
Filament safety	Enabled	/	Load FLUORO tab	Enabled
Rotor safety	Enabled	(Load PULSE tab	Enabled
85% KV safety	Enabled		Load SETTING tab	Enabled
mA_Pulse Safety	Enabled		Load DOSE tab	Enabled
liustment				

Step 4 - After this, restart the system.

NB: each time you switch to <ENABLED>, the system asks to be restarted; you can skip this, set all the four switches to <ENABLED>, then restart the system just once.

Switch OFF and	
restart the System	
RETURN	

Now the default data are loaded on the system, which means you have to do a full calibration and configure all the system settings again.

RX TUBE ADJUSTMENT

The RX tube adjustment involves a fluoro adjustment and a pulse adjustment.

IMPORTANT: after any calibration it is wise to save the data by using the BACKUP functions. Refer to the 'Backup' chapter of this manual.

Fluoro adjustment

IMPORTANT: before doing any fluoro calibration you need to load the FLUORO default data. This is to be done either if you want to adjust both the curves or if you only need to adjust one of them. In this last case the curve that is not adjusted is set to default.

Step 1 - In the Service page set the <Load FLUORO tab> switch to ENABLED. Then restart the system.

Setting Data C	corre	e calibration 114	No fan Standard fan
DPI Pulse "L" Start I: DPI Fluoro "N"	arge Focus Start	k∨ Value 70	Heatsink Fan + heatsink
image Intensifier state	nabled	Operating curve	Fluoro
Collimator state	isabled	Door contact state	Disabled
DAP system state	lisabled	Fluoro Buzzer	Enabled
Dose Factor Disable	d	Low mA for pulsed m	Enabled Fr
Filament safety	Enabled	Load FLUORO tab	Enabled
Rotor safety	Enabled	Load PULSE tab	Disabled
85% KV safety	Enabled	Load SETTING tab	Disabled
mA_Pulse Safety	Enabled	Load DOSE tab	Disabled

Step 2 - In the start page be sure that continuous RX mode is selected. Then press <Service>.

Step 3 - In the <Serivice> page press <Fluoro> to access the Fluoro calibration page.

Setting Data	Code	Correction facto	r <u>114</u>	No fan Standard fan
PI Fluoro "N"	tart large Focus	Start KV Value	70	Heatsink Fan + heatsink
Image Intensifier state	Enabled		Operating curve	Fluoro
Collimator state	Disabled		Door contact state	Disabled
DAP system state	Disabled		Fluoro Buzzer	Enabled
Dose Factor	abled		Low mA for pulsed mod	e sf
Filament safety	Enabled		Load FLUORO tab	Disabled
Rotor safety	Enabled		Load PULSE tab	Disabled
85% KV safety	Enabled		Load SETTING tab	Disabled
mA_Pulse Safety	Enabled		Load DOSE tab	Disabled
djustment				

Step 4 - This is the Fluoro calibration page.

You need to calibrate the Fluoro and Isowatt curves, and large and small focus for both the curves; so you have to do four calibrations.

In the figure you have Fluoro curve and small focus; to do calibration press the switch circled below, then press the RX button to X-ray, and keep it pressed until the calibration is over.

Fluoro Adjustme Version 2.0 15kW	ent POST "0"	System Power Version	15 kW 5.03	II. 9"
Ready				
	Operating curve	Fluoro		
40 kV 0.20 mA	Feedback mA	0.00	1	
0: 0 min:s	BIT mA	670		
0.0 mGy*cm ²	I_Primary	0		
	Filamer Monobloc	nt		0.0

Step 5 - Now switch to large focus by pressing the proper button, press the button with the two matching arrows and do the second calibration.

Fluoro Adjustm Version 2.0 15kW	ent POST "0"	System Power Version	15 kW 5.03	UL 9"	.c
Ready					
•	Operating curve	Fluoro			b
)
40 10/					
0.20 mA	Feedback mA	0.00	1		
0: 0 min:s	BIT mA	670			
0.0 mGy*cm ²	I_Primary	0			
	Filame Monobloc	nt		0.0	

- **Step 6 -** You still miss the two calibration for the Isowatt curve; so restart the system, press the button for the selection of the Isowatt curve in the Service page, then restart the system again.
- **Step 7** Repeat Step 2 and Step 3 then press the two matching arrows button and do the third calibration.

Fluoro Adjustme Version 2.0 15kW	ent POST "0"	System Power Version	15 kW 5.03	11. 9''	Esc
Ready					
•	Operating curve	IsoWatt)	1	-++
				(
40 kV 0.20 mA	Feedback mA	0.00	1		
0: 0 min:s	BIT mA	670			
0.0 mGy*cm ²	I_Primary	0			
	Filamer	nt [0.0	•
	Monobloci	« [0.0]

Step 8 - At last, select the small focus again, press the two matching arrows button and do the fourth calibration. Restart the system.

Fluoro Adjustme Version 2.0 15kW	ent POST "0"	System Power Version	15 kW 5.03	II. 9''	Esc
Ready					
•	Operating curve	IsoWatt		ſ	
				Ğ	
40 KV					
0.20 mA	Feedback mA	0.00			
U: U min:s	BII MA	670			
	I_Printary	U			
	Filamer	nt 🗌		0.0	
	Monobloc	k 🗌		0.0]

Pulse adjustment

Step 1 - In the start page, be sure that pulse mode is selected. Then press <Service>.

Step 2 - You have to do seven calibrations for the pulse mode: three for the large focus and tour for the small focus. Select one of the four buttons at the bottom of the screen; here we choose the large focus at 120 mA, but only as an example.

Setting Data Code	Dose calibrat	ion 114	No fan Standard fa
DPI Pulse "L" Start large F DPI Fluoro "N"	Start KV Valu	e 70	Heatsink Fan + heatsir
Image Intensifier state	ed	Operating curve	Fluoro
Collimator state Disabil	ed	Door contact state	Disabled
DAP system state	ed	Fluoro Buzzer	Enabled
Dose Factor Disabled		Low mA for pulsed	mode
Filament safety	ed	Load FLUORO tab	Disabled
Rotor safety	ed	Load PULSE tab	Disabled
85% KV safety	ed	Load SETTING tab	Disabled
mA_Pulse Safety	ed	Load DOSE tab	Disabled
diuctmont	PL	ILSE LF 120 mA	ULSE SF 60 mA

Step 3 - Now you are in the Large Focus – 120 mA Pulse calibration page. Just press the RX button and keep it pressed to do the calibration.

Pulse Adjustment Version 2.0 15kW	POST "0"	System Power Version	15 kW 5.03	I.I. 9''	Esc
Ready]		3 M		
•			2		104 • •
40 kV 120.00 mA	Feedback	mA 0	.00		
0: 0 min:s 0.0 mGy*cm²	BIT mA I_Primary	1:	250 0		
	Filam	ənt		0.0]
	Monoblo	ck		0.0]

NOTE

As the calibration ends, a <WAIT> message appears in the middle of the screen. You must wait for 90 seconds before performing the other adjustments. This wait time is meant to prevent you from doing a full cycle of calibrations and thus overstressing the tube. It appears after each pulse calibration.

Step 4 - To perform the other calibrations you need to return to the <Service> page and select them from there (you can do this even before the wait time ends, but you still cannot x-ray).

Step 5 - Now you are in the Large Focus – 60 mA Pulse calibration page. If the wait time has ended, press the RX button and keep it pressed to do the calibration.

Pulse Adjustment Version 2.0 15kW	POST "0"	System Power Version	15 kW 5.03	LI. 9"	Esc
Ready			3 M)	
•					208 • •
40 KV					
60.00 mA	Feedback n	nA 0	.00		
0: 0 min:s	BIT mA	11	00		
0.0 mGy*cm ²	I_FIIMary		0		
	Filamer	nt 🗌		0.0	
	Monobloc			0.0	

As the calibration ends, wait for 90 seconds before performing the other adjustments (see NOTE in step 3).

Step 6 - To perform the other calibrations you need to return to the <Service> page and select them from there.

Step 7 - Now you are in the Small Focus – 60 mA Pulse calibration page. If the wait time has ended, press the RX button and keep it pressed to do the third calibration.

Pulse Adjustment Version 2.0 15kW	POST "0"	System Power Version	15 kW 5.03	11. 9"	Esc
Ready			, M		
•					<u>104 "</u>
40 kV 60.00 mA	Feedback n	nA (.00		
0: 0 min:s 0.0 mGy*cm²	BIT mA I_Primary		940 0		
	Filame	nt 📃		0.0	
	Monobloc	k L		0.0	

As the calibration ends, wait for 90 seconds before performing the other adjustments (see NOTE in step 3).

Step 8 - To perform the next calibration left click on the switch and access the proper page.

Safety & Tab POS rersion 2.0 15kW	T "0" System Power Version	15 kW	Esc
Setting Data Code	Dose calibration correction facto	n 114	No fan Standard fan
DPI Fluoro "N"	Start KV Value	70	Fan + heatsink
Image Intensifier state	d	Operating curve	Fluoro
Collimator state		Door contact state	Disabled
DAP system state		Fluoro Buzzer	Enabled
Dose Factor Disabled		Low mA for pulsed mo	ide sf 15 m/
Filament safety Enable	d	Load FLUORO tab	Disabled
Rotor safety	d	Load PULSE tab	Disabled
85% KV safety	d	Load SETTING tab	Disabled
mA_Pulse Safety	d	Load DOSE tab	Disabled
Adjustment	PUL	SE LF 120 mA	SE SF 60 mA
	PUL	SE LF 60 mA	SE SF 30 mA
	PUL	SE LF 30 mA	SE SF 15 mA PLS SF 10 m

Step 9 - Proceed in this way with all the values to be calibrated.

afety & Tab POST "0" rsion 2.0 15kW	System Power Version	15 kW 5.03	11. 9''	Esc
Setting Data Code	Dose calibration correction facto	n 114		No fan
DPI Fluoro "H"	Start KV Value	70		Fan + heatsink
Image Intensifier state Enabled		Operating c	urve	IsoWatt
Collimator state Enabled		Door contai	st state	Disabled
DAP system state		Fluoro Buzz	er	Enabled
Dose Factor Disabled		Low mA for	pulsed mod	e sf 10
Filament safety		Load FLUO	RO tab	Disabled
Rotor safety Enabled		Load PULS	E tab	Disabled
85% KV safety		Load SETT	ING tab	Disabled
mA_Pulse Safety Enabled		Load DOSE	tab	Disabled
djustment	PULS	SE LF 120 m	A PULSE	= SF 60 mA
	PUL	SE LF 60 mA	PULSE	E SF 30 mA
	PUL	SE LF 30 mA	PULSE	SF 15 mA PLS SF 10

Pulsed mode calibration procedure is finished, turn off the generator.

COLLIMATOR ADJUSTMENT

Step 1 - Access the <Service> page. Here be sure that the collimator is enabled; if so, you will see a big grey button named <Collimator> at the bottom of the page. Press it to access the collimator calibration page.

Safety & Tab POST "0" ersion 2.0 15kW	System Power Version	15 kW 5.03	11.9"	Esc
Setting Data Code	Dose calibration correction facto	114		No fan Standard fan
DPI Pulse "L" Start large Focus DPI Fluoro "N"	Start KV Value	70		Heatsink Fan + heatsink
Image Intensifier state		Operating c	urve	Fluoro
Collimator state)	Door contac	t state	Disabled
DAP system state		Fluoro Buzz	er	Enabled
Dose Factor Disabled		Low mA for	pulsed mode	Enabled MA 1/2
Filament safety		Load FLUO	RO tab	Disabled
Rotor safety Enabled		Load PULS	E tab	Disabled
85% KV safety Enabled		Load SETTI	NG tab	Disabled
mA_Pulse Safety Enabled		Load DOSE	tab	Disabled
djustment				
FLUORO COLLIMATOR	\triangleright			

Step 2 - This is the collimator adjustment page. First select the I.I. total field.

Step 3 - Then press the RX switch to make an RX exposition. While the RX button is pressed, use the switches circled in the figure below to set the diaphragms opening.

Step 4 - Now release the RX switch and read the two values circled below.

Step 5 - Adjust the values circled in the figure below by using the arrow keys.

Step 6 - Now press the two buttons aside to save the set values.

Step 7 - To end the collimator calibration you need to repeat this whole procedure for the I.I. zoom 1 and zoom 2.

BACKUP

Backup		
Pulse	Fluoro	
Collimator	IsoWatt	

It is recommended to use the Backup function after any calibration. Pressing the buttons on the left allows to save, through four separate files, the data of Pulse, Fluoro curve, Isowatt curve, and Collimator adjustments.

IMPORTANT: you must use these four buttons one by one, turning off and restarting the system, and then performing the next adjustment, after each single press.

EXAMPLE

As an example, we suppose that you're doing a full calibration. A correct sequence of actions is as follows.

- Step 1 Turn on the system, select the pulse mode in the Work page; then enter the Service page and perform the all pulse calibrations (both focuses). Enter the Setting Data page and press the <Pulse> button (BACKUP). Then turn off the system.
- **Step 2 -** Turn on the system again, enter the Service page and press the <Load FLUORO tab> button. Turn off the system.
- Step 3 Turn on the system, select the fluoro mode from the Work page; then enter the Service page and perform the fluoro calibration (both focuses).
 Now let's suppose that you've just adjusted the Fluoro curve. Enter the Setting Data page and press the <Fluoro> button (BACKUP). Then turn off the system.
- **Step 4 -** You now need to choose the Isowatt curve: turn on the system again, enter the Service page and select the Isowatt curve from there. Turn off the system.
- Step 5 Turn on the system again, select the fluoro mode from the Work page; then enter the Service page and perform the fluoro calibration (both focuses). This time you have adjusted the Isowatt curve, so enter the Setting Data page and press the <Isowatt> button (BACKUP). Turn off the system.
- Step 6 Turn on the system again, be sure that the collimator is enabled (check it in the Service page), then perform the collimator adjustment. Enter the Setting Data page and press the last <Collimator> button (BACKUP). Turn off the system one last time.
- **Step 7** Restart the system, which is now ready for use.

IMPORTANT: it does not matter the order you choose to use the four buttons. Just remember to restart the system anytime you press one of them. Pay attention when you change the fluoro curve (FLUORO/ISOWATT), because you need to restart the system once more to load the new curve (this is what happens in STEP 3 of the example above).

RESTORE

Restore		
	Pulse	Fluoro
	Collimator	IsoWatt

The Restore buttons allow to load the data that had been previously saved.

This is especially useful after updating the system

software, since it prevents you from doing any calibration.

NOTE: unlike the BACKUP buttons, you can press all of them and then restart the system.

COMPONENTS

The X-ray generator electronic control is mainly composed by the following electronic boards:

•	Inverter logical board	PSM05
•	Monobloc connection board	PSM26/R
•	Inverter driver board	PSM15
•	Rotating board	PSM20
•	20 kHz filament board	PSM46
•	Interface board	PSM17
•	RS232 / CAN Collimator board	PSM30

The microprocessor is composed by a mother board, on which is installed the processor of Motorola 68340 family, the operative system firmware and the Flash-EPROM with user's program.

This mother board is integrated with a 16 digital input module with filter of 0.2 msec., a 16 digital output module, with 8 analogue inputs with 10 bit resolution, a 4 analogue output module with 12 bit resolution, a module for the conduction of serial port communication with PC external control, and a module with 2 serial port for communication whit Flxis and D.A.P. System.

INVERTER LOGICAL BOARD

PSM05

- Ld1r = Driver Fault Ld2r = Delta kV Max Ld3r = kV > 110%Ld4r = kV minimumLd5r = I primary maximum Ld6y = Control driver channel 1 Ld7y = Control driver channel 2 Ld8y = Radiographic preparation Ld9y = Radiographic input Ld10y = Pulse selection $Ld11g = +15 Vdc Supply \pm 0.2V$ $Ld12g = -15 Vdc Supply \pm 0.2V$ CP1 = External signal interface CP2 = mAs Meter CP3 = kV / mA Feedback CF1 = External signal interface CF2 = Driver interface
- TP1 = Kv + (+1v = +10 kV)(1V = 1 mA)TP2 = mA Fluoro TP3 = kV tube $(1V = 20 \, kV)$ TP4 = mA Pulse (1V = 20 mA)TP5 = GND = Kv -(-1v = -10 kV)TP6 TP7 = I primary TP8 = Driver channel 1 TP9 = Driver channel 2 TP10 = Control PWM TP11 = Inverter frequency
- P1 = primary Max I P3 = Inverter frequency N.B. SET IN FACTORY DO NOT MODIFY
- r = red y = yellow g = green

FILAMENT SUPPLY BOARD

PSM46

DON'T MODIFY

3000 rpm ROTATION CHECK BOARD PSM20

Ld1y	= Fluoro Command
Ld2y	 Maintenance voltage
Ld3g	= Rotation OK
Ld4y	= Pulse Command
-	

y = yellow g = green

P1 = Output voltage

P2 = Anode rotation time

- TB2 = phase shift
- TB3 = anode rotation output
- TB4 = n.u.
- CP1 = control signal

PSM 20 ROTATING ANODE OUTPUT VOLTAGE ADJUSTMENT

Connect a voltmeter in Vac "true RMS", between **TB3-2** terminal and **TB3-3** terminal of PSM20 stator rotating.

Operate, with Fluoroscopy foot-lever, and verify within 10 s that the instrument visualizes the output voltage between 70 and 80 Vac.

If necessary adjust this voltage with the potentiometer P1 of the rotating anode board.

OUTPUT VOLTAGE ADJUSTMENT

DRIVER BOARD

PSM15

TPB1=BaseIGBT 1TPE1=Emitter IGBT 1TPB2=BaseIGBT 2TPE2=Emitter IGBT 2TPB3=BaseIGBT 3TPE3=Emitter IGBT 3TPB4=BaseIGBT 4TPE4=Emitter IGBT 4

TP1 = + 15Vdc $\pm 0.2V$ TP2 = GND CP1 = Power supply 24Vdc CP2 = Current transformer CF1 = Interface signal with PSM05 Ld1g = + 15Vdc Ld2y = Driver command

P1 = +15Vdc Adj

y = yellow g = green

N.B. SET IN FACTORY DO NOT MODIFY

!! ATTENTION !! LINE TENSION CONNECTED BOARD USE NOT GROUND CONNECTED INSTUMENT

RS232 / CAN COLLIMATOR BOARD

PSM30

CP1 = Power Supply +24Vdc ±0.2V CP2 = Collimator Plug CN2 = PLC Serial Port-2 Ld1r = ErrorLd2g = Statusr = Red g = Green

CONNECTION BOARD

PSM26 R

- CP1 = Feedback/Thermal Contact
- CP2 = Focal Plug
- CP3 = Anode rotation Plug

- = Primary Power Supply Connector
- = Primary Power Supply Connector
- GND = GND Power Connector

А

В

INTERFACE BOARD

PSM17

- CP1 = 230Vac > PSM46 input
- CP2 = +350Vcc > PSM46 output
- CP3 = +24Vcc
- CP4 = GND
- CP5 = signals > PSM05
- CP6 = OUT Analog. < Microprocessor
- CP7 = IN Analog. > Microprocessor
- CP8 = X-ray remote foot-lever
- CP9 = signals for insertion
- CP10 = thermal safety signals

- CP11 = Signals > PSM20
- CP12 = Collimator power supply
 - CP13 = N.U.
 - CP14 = X-Ray room interface
 - CP15 = N.U.
 - CP16 = Signals > Flxis
 - CP17 = N.U.
 - CF1 = IN Digitals > Microprocessor
 - CF2 = OUT Digitals < Microprocessor
 - CF3 = Signals > PSM46
- P1 = maximum radiographic time
 - N.B. SET IN FACTORY DO NOT MODIFY

EXTERNAL INTERFACE

EXTERNAL SIGNALS RADIOLOGICAL ROOM

CP14 connector of PSM17 interface board puts at disposal, on pin 1 and 2, the possibility to connect a micro switch as to signal the condition of the door accessing to radiological room. Opened contact is shown on the display with the message "DOOR SAFETY" and the X-ray generator is disabled to X-ray emissions.

PSM 17

On CP14 connector, pin 4 and 5, there is at disposal a "clean" contact of K1 relay. This contact is closed by radiographic preparation command executed by the remote foot-switch.

SAFETIES

The **MX-350/S15** has been planned in respect of all possible risks coming from malfunctioning.

The safeties that have been used can be shared in two principal groups: "hardware" safeties and "software" safeties.

HARDWARE SAFETIES

Total safety

On the machine is installed a red colour safety button.

The pressure of this button causes the fall of power supply on the auxiliary relay K_STOP , that in consequence causes the interruption of power supply to the filament board, rotation anode board and the coil of the insertion relay K_INS .

Door safety

On pin 1 and 2 of the terminal board CP14 of PSM17 board must be linked a micro switch that signals the door opening in the radiological room.

The opening of the contact disables any X-ray emissions; this condition is signalled by a warning message on the screen.

X-ray tube thermal safety

On pin 1 and 3 of terminal board CP10 of PSM17 board must be linked the terminal of the X-ray tube housing thermal safety.

The opening of this contact disables any X-ray emissions; this condition is signalled by a warning message on the screen.

Watch-dog contact of the PLC

In series with the coil of the relay K_LINE, that causes the insertion of generator power group, is located the contact relay of the PLC watch-dog.

The command to this relay is directly sent by the PLC software and must be refreshed with a minimum cadence of 5 Hz equal to once each 200 milliseconds.

The blockage, for any reason, of the microprocessor watch-dog causes the interruption of the power supply (OUT_52) to insertion primary relay K_LINE.

Maximum radiographic time safety

On the interface board PSM17, the circuit shown below causes the interruption of X-ray exposure command to the inverter after a maximum time fixed in advance, regardless of the signal presence coming from the microprocessor.

The signal "A" is the X-ray order coming from the microprocessor and defines the X-ray emission time.

The signal "C" is the X-ray emission command for the logic board of the inverter. These two signals, normally at low logic level (0 Volt), go at high logic level during the emission time.

The X-ray maximum time that can be set on the generator web interface is of 5 seconds. If, for a system failure, the signal "A" is not interrupted after the time set by the

microprocessor, the signal "B", set by hardware circuit to stay at high logic level for 5050 milliseconds, cuts the command toward the inverter logic board.

Normal functioning

Safety intervention

SOFTWARE SAFETIES

The software safeties have been introduced as to assure "step by step" the check of X-ray parameters.

First of all we point out the fact that, after executing the X-ray preparation command, the X-ray generator controls the parameters sent to the X-ray tube and the reading of the feedback inputs coming from the high voltage generator "only".

This assures a time of engine cycle < than 1 millisecond.

By this time they are checked all the signals from and to the inverter, the analogical values of filament current and, after X-ray command, of mA and of actual kV.

Besides they are always inspected all the alert signals that can cause the exposure blockage, like door safety, thermal safety, accessories installed, generator power supply. The feedback values are compared with set data and if they both fall within a tolerance field, the exposure can finish normally.

Filament safety

From stand-by condition to X-ray preparation, the filament current is continuously checked. The filament check board PSM46 sends to the microprocessor the signal "ready" only if the filament power supply is included between a minimum value and a maximum value, both fixed in the project phase.

If the values exceed this range and the signal "ready" is missing, on the screen appears a warning message and the X-ray unit does not execute any command towards the power part.

mA maximum safety

The actual mA value is compared with the mA maximum value supported by the X-ray tube for the fixed data.

If the actual values exceed the accepted data for a consecutive reading number set by the program, the exposure is interrupted and it appears an alert message on the screen. This solution has been adopted as to avoid that a single peak signal could cause the exposure interruption.

mA minimum safety

If the actual values are lower than the accepted data for a consecutive reading number setted by the X-ray generator, the exposure is interrupted and it appears an alert message on the screen.

ERROR LIST

E.01	Rotor Starter Not OK	X-ray tube rotating anode signal NOT present after the
		command of radiographic exposure in pulse or One shoot
		mode.

Check the following conditions:

PSM20	TB1-1 with TB1-3	230 Vac ± 10%
	\triangle	Check the electrical power board connection PSM20 Check the contact of the remote-control switch K_STOP

PSM20	F1 – F2	10 A – T
	\triangle	Replace the fuses F1-F2

PSM20	Ld4 yellow	ON Preparation order (OUT 60) executed.
	\triangle	Check the connection with PSM17 CP16-3

PSM20	Ld3 green	ON Rotor consent (IN 35) present.
	\triangle	Check the connection with PSM17 CP11-3 Check the maintenance tension value

E.02	Collimator not ready	At the start-up, the system cannot detect the collimator,
		and commator state is set to ENABLED in the service
		page.

Check the following conditions:

	Check the connection between PSM30 board and the PLC Check the connection between PSM30 board and the collimator Check +24Vdc on CP1, pin1 and 2 of PSM30 board
--	--

E.03	Kv>85% Not OK	85% kV feedback of the X-ray tube signal NOT present
		during the exposure.

Check the following conditions:

Check the connection between PSM CP1-4	117 CP5-4 and PSM05
---	---------------------

E.04	mA limit	During calibration, the mA value exceeded the maximum
		mA value that the generator can bear.

Check the following conditions:

\triangle	Call the servicing
-------------	--------------------

E.05	Thermal HU limit	Exposure blockage when the monobloc thermal limit is
		reached (software calculated).

N.B. Wait for the monobloc cooling in functioning limits.

To avoid the continuous intervention of the thermal limit, it is recommended to take again the use of the generator after the thermal bar gets < 85%.

E.06	Inverter Fault	Inverter blockage signal present during X-ray emission.

Check the following conditions:

PSM05	Ld2 red	OFF
	Λ	ON = Difference between kV+ and kV- higher to allowed limit.
		DISTURBANCE ON H.T. CIRCUIT
PSM05	Ld3 red	OFF
	Λ	ON = kV Feedback upper to 110% of kV max.
		DISTURBANCE ON H.T. CIRCUIT
PSM05	Ld4 red	OFF
	Λ	ON = kV Feedback not present
		DISTURBANCE ON H.T. CIRCUIT
PSM05	Ld5 red	OFF
	\wedge	ON = Inverter primary current upper to allowed limit
		UVERLUAD UN H.I. CIRCUII

E.06	Inverter Fault	Inverter blockage signal present at the switch on of the
		unit.

Check the following conditions:

PSM05	Ld4 red	OFF
	\triangle	ON = check electrical connection of the of the feedback signal between the monobloc and the PSM05-CP3 board

E.07	Filament Fault	Filament board consent signal NOT present during the
		exposure

Check the following conditions:

PSM 17	CP1-1 con CP1-3	230 Vac +/- 10%
	\triangle	Check electrical connection of the filament board. Check the contact of the remote-control switch K_STOP

PSM 17	F1	2A T
	\triangle	Replace the fuses F1

PSM46	F1	1A T
	\triangle	Replace the fuses F1

PSM46	Ld2 green	ON = filament board ready signal (IN 34)
	\triangle	OFF = check electrical connection between filament board and monobloc Check monobloc functionality

E.08	Monobloc Thermal	Inner monobloc thermal safety NOT present
	Safety	(IN 39)

Check the following conditions:

PSM06	IN 39	ON
	\triangle	OFF = Check the electrical connection between monobloc PSM06 CP2– terminal board interface M2 – board PSM17 CP10
		If it has been selected the cooling with the fan, check the presence of the fan. Check the fan functioning

E.09 Door Safety X-ray room door micro switch opens during X-ray emission (IN 39)

Check the following condition:

\triangle	Reset the condition of normal use
-------------	-----------------------------------

If the system is in stand-by condition, and then there isn't x-ray emission, the x-ray room door opening is signaled on the screen with the write "DOOR SAFETY", without the indication of the error number.

The door micro switch closing deletes automatically the message and returns to "READY". condition.

E.10	Max Fluoroscopy Time	Exposure blockage after 10 minutes of fluoroscopy
		accumulation without reset command

Loosen the X-ray foot-switch, reset the error message and, if necessary, repeat the test.

N.B.

30 seconds before the safety intervention, the system sends out a continuous acoustic signal to alert the operator that it's reaching the maximum limit of accumulation in fluoroscopy, to continue the test, without interruption, press the button in the picture below.

E.13	Failed Communication	The system is not able to communicate with the I.I. flxis
	1.1.	

	Check the connection between the I.I. system and the M4 connection board Check the connection between the M4 connection board and the PLC
--	--

E.14 Max I Filament

Filament current upper to the max limit for the selected focus.

Check the following condition:

Δ	To check the setting value
<u> </u>	To check the filament current value, to connect a measuring instrument (multimeter), with sequence in Vcc, PSM46 board between Tp10 (gnd) and Tp8 (signal). the measured value, on Volt, multiplied for the constant, 50, furnishes the mA value that circulate in the primary of the Coolidge. This value, multiplied for the factor 11, furnishes, indirectly, the value of the current that circulate in the X-ray tube filament.
	Ex. measured value with multimeter 4.35 Volt
	$4.35 \times 50 = 217,5$ mA primary Coolidge 217,5 x 11 = 2.39 filament ampere

ADDITIONAL INFORMATION

No X-ray emission after the command of the foot-switch

- The generator isn't in work mode.
- Error message on the screen.
- X-ray room door open.
- Connection interrupted or absence of the foot-switch.

No external lighting indication during X-ray emission.

- External bulb broken or burnt out.
- Connection interrupted or absence of the bulb.

No motion of the collimator.

- Collimator not enabled from the Set-up
- Connection interrupted or absent between the collimator and PSM30 CP2

Monitor off

- Generator in stand-by condition
- Power monitor fuse F3 broken.

MAINTENANCE

Installer and/or operator of the unit described in this document has to know all the safety rules and regulations.

All the X-ray generator parts must be controlled and inspected at least once a year, to ensure unit correct functioning and operator and patient safety.

Every 12 (twelve) months an engineer must inspect and, if necessary, replace those parts that will be representing danger for wear and tear effect.

Verify the screens and all the visual and sound signals, pay particular attention to X-ray emission indicator that must be visible during the effective X-ray emission only, otherwise immediately interrupt the maintenance and contact the service department.

N.B. During the X-ray emission functioning tests put the protective wearing (lead-covered), keep properly distance and carry an exposure control film – badge or personal pen dosimeter.

CLEANING

Switch off and disconnect the system from power supply before cleaning.

- Clean plastic areas with water and mild soap.
- Other substance can damage plastic parts.
- Do not utilize cleaning agents or corrosive creams, solvents or abrasives.
- Be sure that water or other liquid substance don't penetrate the unit.
- That caution prevent short-circuits and components corrosion.
- It isn't recommended the spray disinfection, as the disinfectant can penetrate the Xray unit.

WASTE

Unit out of use must be wasted following the current regulation of special waste.

SYMBOLS

Annex "D" (IEC 60601-1)

<u>}</u>

 \times

- Filtration
- **Small Focus**
- Large focus
- <u>^</u> Warning
- Radiation
- **CE**₀₀₅₁ EC marking
- Earthing